Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Surg Res ; 285: 176-186, 2023 05.
Article in English | MEDLINE | ID: mdl-36682343

ABSTRACT

INTRODUCTION: Sentinel lymph node biopsy (SLNB) is a standard practice for staging cutaneous melanoma. High false-negative rates have an increased interest in adjunctive techniques for localizing SLNs. Mobile gamma cameras (MGCs) represent potential tools to enhance SLNB performance. METHODS: An institutional review board approval was obtained for this study (ClinicalTrials.gov ID NCT01531608). After obtaining informed consent, 20 eligible melanoma patients underwent 99mTc sulfur colloid injection and standard lymphoscintigraphy with a fixed gamma camera (FGC). A survey using a 20 cm square MGC, performed immediately preoperatively by the study surgeon, was used to establish an operative plan while blinded to the FGC results. Subsequently, SLNB was performed using a gamma probe and a novel 6 cm diameter handheld MGC. RESULTS: A total of 24 SLN basins were detected by FGC. Prior to unblinding, all 24 basins were identified with the preoperative MGC and the operative plan established by preoperative MGC imaging was confirmed accurate by review of the FGC images. All individual sentinel lymph nodes were identified during intraoperative MGC imaging, and in 5/24 (21%) cases, surgeon-reported additional clinically useful information was obtained from the MGC. CONCLUSIONS: Preoperative MGC images provide information consistent with FGC images for planning SLNB and in some cases provide additional information that aided in surgical decision-making.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Gamma Cameras , Lymph Nodes/pathology , Lymphoscintigraphy , Melanoma/pathology , Radiopharmaceuticals , Sentinel Lymph Node Biopsy/methods , Skin Neoplasms/pathology , Technetium Tc 99m Sulfur Colloid
2.
EJNMMI Res ; 10(1): 139, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33175204

ABSTRACT

BACKGROUND: Assessment of lymphatic status via sentinel lymph node (SLN) biopsy is an integral and crucial part of melanoma surgical oncology. The most common technique for sentinel node mapping is preoperative planar scintigraphy of an injected gamma-emitting lymphatic tracer followed by intraoperative node localization using a non-imaging gamma probe with auditory feedback. In recent years, intraoperative visualization of SLNs in 3D has become possible by coupling the probe to an external system capable of tracking its location and orientation as it is read out, thereby enabling computation of the 3D distribution of the tracer (freehand SPECT). In this project, the non-imaging probe of the fhSPECT system was replaced by a unique handheld gamma camera containing an array of sodium iodide crystals optically coupled to an array of silicon photomultipliers (SiPMs). A feasibility study was performed in which preoperative SLN mapping was performed using camera fhSPECT and the number of detected nodes was compared to that visualized by lymphoscintigraphy, probe fhSPECT, and to the number ultimately excised under non-imaging probe guidance. RESULTS: Among five subjects, SLNs were detected in nine lymphatic basins, with one to five SLNs detected per basin. A basin-by-basin comparison showed that the number of SLNs detected using camera fhSPECT exceeded that using lymphoscintigraphy and probe fhSPECT in seven of nine basins and five of five basins, respectively. (Probe fhSPECT scans were not performed for four basins.) It exceeded the number excised under non-imaging probe guidance for seven of nine basins and equaled the number excised for the other two basins. CONCLUSIONS: Freehand SPECT using a prototype SiPM-based gamma camera demonstrates high sensitivity for detection of SLNs in a preoperative setting. Camera fhSPECT is a potential means for efficiently obtaining real-time 3D activity distribution maps in applications such as image-guided percutaneous biopsy, and surgical SLN biopsy or radioguided tumor excision.

3.
Med Phys ; 44(11): 5740-5748, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28877351

ABSTRACT

PURPOSE: This study investigated a novel gamma camera for molecular breast tomosynthesis (MBT), which is a nuclear breast imaging method that uses limited angle tomography. The camera is equipped with a variable angle, slant-hole (VASH) collimator that allows the camera to remain close to the breast throughout the acquisition. The goal of this study was to evaluate the spatial resolution and count sensitivity of this camera and to compare contrast and contrast-to-noise ratio (CNR) with conventional planar imaging using an experimental breast phantom. METHODS: The VASH collimator mounts to a commercial gamma camera for breast imaging that uses a pixelated (3.2 mm), 15 × 20 cm NaI crystal. Spatial resolution was measured in planar images over a range of distances from the collimator (30-100 mm) and a range of slant angles (-25° to 25°) using 99m Tc line sources. Spatial resolution was also measured in reconstructed MBT images including in the depth dimension. The images were reconstructed from data acquired over the -25° to 25° angular range using an iterative algorithm adapted to the slant-hole geometry. Sensitivity was measured over the range of slant angles using a disk source. Measured spatial resolution and sensitivity were compared to theoretical values. Contrast and CNR were measured using a breast phantom containing spherical lesions (6.2 mm and 7.8 mm diameter) and positioned over a range of depths in the phantom. The MBT and planar methods had equal scan time, and the count density in the breast phantom data was similar to that in clinical nuclear breast imaging. The MBT method used an iterative reconstruction algorithm combined with a postreconstruction Metz filter. RESULTS: The measured spatial resolution in planar images agreed well with theoretical calculations over the range of distances and slant angles. The measured FWHM was 9.7 mm at 50 mm distance. In reconstructed MBT images, the spatial resolution in the depth dimension was approximately 2.2 mm greater than the other two dimensions due to the limited angle data. The measured count sensitivity agreed closely with theory over all slant angles when using a wide energy window. At 0° slant angle, measured sensitivity was 19.7 counts sec-1 µCi-1 with the open energy window and 11.2 counts sec-1 µCi-1 with a 20% wide photopeak window (126 to 154 keV). The measured CNR in the MBT images was significantly greater than in the planar images for all but the lowest CNR cases where the lesion detectability was extremely low for both MBT and planar. The 7.8 mm lesion at 37 mm depth was marginally detectable in the planar image but easily visible in the MBT image. The improved CNR with MBT was due to a large improvement in contrast, which out-weighed the increase in image noise. CONCLUSION: The spatial resolution and count sensitivity measurements with the prototype MBT system matched theoretical calculations, and the measured CNR in breast phantom images was generally greater with the MBT system compared to conventional planar imaging. These results demonstrate the potential of the proposed MBT system to improve lesion detection in nuclear breast imaging.


Subject(s)
Breast/diagnostic imaging , Tomography/instrumentation , Gamma Cameras , Humans , Phantoms, Imaging , Signal-To-Noise Ratio
4.
IEEE Trans Nucl Sci ; 61(3): 1084-1091, 2014 May.
Article in English | MEDLINE | ID: mdl-28286345

ABSTRACT

This paper describes the development of a hand-held gamma camera for intraoperative surgical guidance that is based on silicon photomultiplier (SiPM) technology. The camera incorporates a cerium doped lanthanum bromide (LaBr3:Ce) plate scintillator, an array of 80 SiPM photodetectors and a two-layer parallel-hole collimator. The field of view is circular with a 60 mm diameter. The disk-shaped camera housing is 75 mm in diameter, approximately 40.5 mm thick and has a mass of only 1.4 kg, permitting either hand-held or arm-mounted use. All camera components are integrated on a mobile cart that allows easy transport. The camera was developed for use in surgical procedures including determination of the location and extent of primary carcinomas, detection of secondary lesions and sentinel lymph node biopsy (SLNB). Here we describe the camera design and its principal operating characteristics, including spatial resolution, energy resolution, sensitivity uniformity, and geometric linearity. The gamma camera has an intrinsic spatial resolution of 4.2 mm FWHM, an energy resolution of 21.1 % FWHM at 140 keV, and a sensitivity of 481 and 73 cps/MBq when using the single- and double-layer collimators, respectively.

5.
Phys Med Biol ; 57(13): 4195-210, 2012 Jul 07.
Article in English | MEDLINE | ID: mdl-22684043

ABSTRACT

Several positron emitting radioisotopes such as (11)C and (13)N can be used in plant biology research. The (11)CO(2) tracer is used to facilitate plant biology research toward optimization of plant productivity, biofuel development and carbon sequestration in biomass. Positron emission tomography (PET) imaging has been used to study carbon transport in live plants using (11)CO(2). Because plants typically have very thin leaves, little medium is present for the emitted positrons to undergo an annihilation event. The emitted positrons from (11)C (maximum energy 960 keV) could require up to approximately 4 mm of water equivalent material for positron annihilation. Thus many of the positrons do not annihilate inside the leaf, resulting in limited sensitivity for PET imaging. To address this problem we have developed a compact beta-positive, beta-minus particle imager (PhytoBeta imager) for (11)CO(2) leaf imaging. The detector is based on a Hamamatsu H8500 position sensitive photomultiplier tube optically coupled via optical grease to a 0.5 mm thick Eljen EJ-212 plastic scintillator. The detector is equipped with a flexible arm to allow its placement and orientation over or under the leaf to be studied while maintaining the leaf's original orientation. To test the utility of the system the detector was used to measure carbon translocation in a leaf of the spicebush (Lindera benzoin) under two transient light conditions.


Subject(s)
Lindera/metabolism , Positron-Emission Tomography/instrumentation , Carbon Dioxide , Carbon Radioisotopes , Plant Leaves/metabolism
6.
Phys Med Biol ; 53(3): 637-53, 2008 Feb 07.
Article in English | MEDLINE | ID: mdl-18199907

ABSTRACT

Tomographic breast imaging techniques can potentially improve detection and diagnosis of cancer in women with radiodense and/or fibrocystic breasts. We have developed a high-resolution positron emission mammography/tomography imaging and biopsy device (called PEM/PET) to detect and guide the biopsy of suspicious breast lesions. PET images are acquired to detect suspicious focal uptake of the radiotracer and guide biopsy of the area. Limited-angle PEM images could then be used to verify the biopsy needle position prior to tissue sampling. The PEM/PET scanner consists of two sets of rotating planar detector heads. Each detector consists of a 4 x 3 array of Hamamatsu H8500 flat panel position sensitive photomultipliers (PSPMTs) coupled to a 96 x 72 array of 2 x 2 x 15 mm(3) LYSO detector elements (pitch = 2.1 mm). Image reconstruction is performed with a three-dimensional, ordered set expectation maximization (OSEM) algorithm parallelized to run on a multi-processor computer system. The reconstructed field of view (FOV) is 15 x 15 x 15 cm(3). Initial phantom-based testing of the device is focusing upon its PET imaging capabilities. Specifically, spatial resolution and detection sensitivity were assessed. The results from these measurements yielded a spatial resolution at the center of the FOV of 2.01 +/- 0.09 mm (radial), 2.04 +/- 0.08 mm (tangential) and 1.84 +/- 0.07 mm (axial). At a radius of 7 cm from the center of the scanner, the results were 2.11 +/- 0.08 mm (radial), 2.16 +/- 0.07 mm (tangential) and 1.87 +/- 0.08 mm (axial). Maximum system detection sensitivity of the scanner is 488.9 kcps microCi(-1) ml(-1) (6.88%). These promising findings indicate that PEM/PET may be an effective system for the detection and diagnosis of breast cancer.


Subject(s)
Biopsy, Needle/instrumentation , Mammography/instrumentation , Positron-Emission Tomography/instrumentation , Surgery, Computer-Assisted/instrumentation , Biopsy, Needle/methods , Equipment Design , Equipment Failure Analysis , Mammography/methods , Phantoms, Imaging , Positron-Emission Tomography/methods , Reproducibility of Results , Sensitivity and Specificity , Surgery, Computer-Assisted/methods
7.
J Magn Reson ; 186(2): 305-10, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17433742

ABSTRACT

Multi-modality imaging (such as PET-CT) is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET, fused with anatomical images created by MRI, allow the correlation of form with function. Perhaps more exciting than the combination of anatomical MRI with PET, is the melding of PET with MR spectroscopy (MRS). Thus, two aspects of physiology could be combined in novel ways to produce new insights into the physiology of normal and pathological processes. Our team is developing a system to acquire MRI images and MRS spectra, and PET images contemporaneously. The prototype MR-compatible PET system consists of two opposed detector heads (appropriate in size for small animal imaging), operating in coincidence mode with an active field-of-view of approximately 14 cm in diameter. Each detector consists of an array of LSO detector elements coupled through a 2-m long fiber optic light guide to a single position-sensitive photomultiplier tube. The use of light guides allows these magnetic field-sensitive elements of the PET imager to be positioned outside the strong magnetic field of our 3T MRI scanner. The PET scanner imager was integrated with a 12-cm diameter, 12-leg custom, birdcage coil. Simultaneous MRS spectra and PET images were successfully acquired from a multi-modality phantom consisting of a sphere filled with 17 brain relevant substances and a positron-emitting radionuclide. There were no significant changes in MRI or PET scanner performance when both were present in the MRI magnet bore. This successful initial test demonstrates the potential for using such a multi-modality to obtain complementary MRS and PET data.


Subject(s)
Magnetic Resonance Spectroscopy/instrumentation , Magnetic Resonance Spectroscopy/methods , Phantoms, Imaging , Positron-Emission Tomography/instrumentation , Positron-Emission Tomography/methods , Animals , Brain
8.
Phys Med Biol ; 51(24): 6371-9, 2006 Dec 21.
Article in English | MEDLINE | ID: mdl-17148823

ABSTRACT

Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI will allow the correlation of form with function. Our group is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode. Each MRI-PET detector module consists of an array of LSO detector elements coupled through a long fibre optic light guide to a single Hamamatsu flat panel position-sensitive photomultiplier tube (PSPMT). The use of light guides allows the PSPMTs to be positioned outside the bore of a 3T MRI scanner where the magnetic field is relatively small. To test the device, simultaneous MRI and PET images of the brain of a male Sprague Dawley rat injected with FDG were successfully obtained. The images revealed no noticeable artefacts in either image set. Future work includes the construction of a full ring PET scanner, improved light guides and construction of a specialized MRI coil to permit higher quality MRI imaging.


Subject(s)
Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/instrumentation , Positron-Emission Tomography/methods , Algorithms , Animals , Artifacts , Diagnostic Imaging/methods , Equipment Design , Image Processing, Computer-Assisted , Male , Radiography , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...